Modelling and motion analysis of space electrodynamic tethered systems 空間電動(dòng)繩系推進(jìn)的動(dòng)力學(xué)建模與分析
The answer is that the tether system is potentially more efficient, however paradoxical it may appear 答案在于纜索系統(tǒng)的效率可能較高,不管這看來(lái)多麼矛盾。
In this application, the lorentz force generated by the interaction between the current in the wire and the geomagnetic field produces an electro-dynamic drag leading to a fast orbital decay . in this paper, we make an intensive study of the process of de-orbiting using electro-dynamic tether system . the concrete work includes : firstly, i have studied the basic principle of how to generate the electro-dynamic drag, modeled via accuracy geomagnetism, made a concrete analysis of the de-orbiting duration, the magnitude and direction of electro-dynamic drag under the action of the dipole and accurate geomagnetic models, set up a counterbalance between electro-dynamic torque and gravity gradient torque, emulate the de-orbiting process of spacecraft, and compared the change of six orbital factors and the de-orbiting duration under the action of the dipole and accurate geomagnetic models 本文對(duì)基于電動(dòng)力纜繩的航天器離軌過(guò)程進(jìn)行了深入研究,具體工作如下:首先,本文研究了電動(dòng)力纜繩產(chǎn)生電動(dòng)力拉力的基本原理,建立了精確地磁場(chǎng)模型;分別在偶極子模型和精確地磁場(chǎng)模型作用下,對(duì)電動(dòng)力拉力的大小、方向、離軌時(shí)間及電動(dòng)力纜繩傾角的大小進(jìn)行了計(jì)算分析;建立了電動(dòng)力力矩與纜繩系統(tǒng)重力梯度力矩的平衡關(guān)系;分析了電動(dòng)力力矩為系統(tǒng)提供能量的原理;最后分別在偶極子地磁場(chǎng)模型和精確地磁場(chǎng)模型作用下,對(duì)受電動(dòng)力纜繩作用的航天器的離軌過(guò)程進(jìn)行仿真,分析了在不同精度地磁場(chǎng)模型下,航天器離軌過(guò)程中各軌道參數(shù)的變化情況,并比較了不同模型對(duì)離軌時(shí)間的影響。